The magic carpet

It is known ${ }^{1}$ that the Penrose tiling is a projection of a section of a fivedimensional cubic lattice onto the plane. In analogy with the cubic lattice in three dimensions, the vertices can be labelled with the integers $0, \ldots, 31$ in such a way that the sum around any square is 62 , and accordingly the tiling can be so labelled. In part it looks like this:

[^0]

This has the following properties:

- There is a central axis around which the graph has a fivefold symmetry, i.e. rotating it any multiple of 72 degrees carries it into itself.
- Similarly there is a reflection symmetry about the horizontal axis, the top and bottom are mirror images.
(These properties hold only for this particular representation of the tiling, which corresponds to a projection onto a plane passing through the origin in five-space.)
- The center is the vertex labelled with 0 .
- The horizontal axis passes through the vertices labelled $27,0,17$, etc.
- The labels of adjacent vertices, regarded as bit-vectors, are related either by the requirement that they agree in exactly one place, as e.g. from the origin
$0=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array} 0\right)<->\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 1\end{array}\right)=15,\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)=23,\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)=27$, $\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)=29,\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)=30$
or (when crossing a boundary between adjacent five-cubes) as complements, e.g.
$17=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\right)<->14=\left(\begin{array}{lllll}0 & 1 & 1 & 1 & 0\end{array}\right)$
$24=\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)<->7=\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)$
(etc.)
- When the graph is rotated counterclockwise 72 degrees, the bit representation of the label does a cyclic shift right, e.g. around the center decahedron
$17=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 1\end{array}\right) \rightarrow>24=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right) \rightarrow>12=\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)$
$\rightarrow>=\left(\begin{array}{lllll}0 & 1 & 1 & 0\end{array}\right) \rightarrow>3=\left(\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}\right) \rightarrow>17$
- Reflection about the horizontal axis carries a label bitwise into its inversion, thus
[a] The numbers on the axis are bitwise palindromic, e.g. left to right $10=\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right), 17=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right), 27=\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right), 0=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right), 14=$ (0 11110$), 31=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$, and
[b] proceeding right from the center

$$
\begin{aligned}
& 15=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1
\end{array}\right)<->30=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 0
\end{array}\right) \\
& 6=\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right)<->12=\left(\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right) \\
& 25=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right)<->19=\left(\begin{array}{llll}
1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

etc.

- Moreover the hidden values of the projected 3 -cubes can be inferred as follows: looking, e.g., at the central decahedron

the sum around any square must be 62 , and thus the missing values are $9,20,10,5$, and 18 . (These obey the cyclic shift rule.)

[^0]: ${ }^{1}$ N. G. de Bruijn, "Algebraic theory of Penrose's non-periodic tilings of the plane [I, II]", Indagationes Mathematicae 84, 38-52, 53-66 (1981).

